Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Hapipah M. Ali, Siti Nadiah Abdul Halim, Saha Koushik and Seik Weng Ng*

Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia

Correspondence e-mail: seikweng@um.edu.my

Key indicators

Single-crystal X-ray study
$T=295 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.007 \AA$
R factor $=0.048$
$w R$ factor $=0.144$
Data-to-parameter ratio $=15.0$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

Bis(3-bromo-1-oxidoanthraquinone- $\kappa^{2} O^{1}, O^{9}$)-bis(pyridine- κN)copper(II) dihydrate

The Cu atom in the title compound, $\left[\mathrm{Cu}\left(\mathrm{C}_{14} \mathrm{H}_{6} \mathrm{BrO}_{3}\right)_{2^{-}}\right.$ $\left.\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)_{2}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$, lies on a center of inversion; it is chelated by the bromo-substituted hydroxyanthroquinone molecule and is coordinated by the pyridine molecules in an all-trans octahedral geometry.

Comment

Our previous study has documented the structure of the zinc derivative of a bromo-substituted 1-hydroxyanthraquinone anion (Ali et al., 2005). This zinc complex crystallizes from pyridine as a bis-pyridine adduct in an all-trans octahedral enviroment. The corresponding title copper complex, (I), adopts the identical geometry, but the compound crystallizes as a dihydrate (Fig. 1). The Cu atom lies on a special position of $\overline{1}$ site symmetry; the chelating O atoms form a square, and the N atoms of the heterocyle occupy the other two octahedral sites. Hydrogen bonds (Table 2) link the molecule to the uncoordinated water molecule to give rise to a linear chain.

(I)

Experimental

3-Bromo-1-hydroxyanthraquinone ($0.50 \mathrm{~g}, 1.65 \mathrm{mmol}$) and copper acetate monohydrate $(0.16 \mathrm{~g}, 0.82 \mathrm{mmol})$ were heated in ethanol for several hours. The solid that was isolated upon removal of the solvent was recrystallized from pyridine to furnish brown prisms.

Crystal data

$\left[\mathrm{Cu}\left(\mathrm{C}_{14} \mathrm{H}_{6} \mathrm{BrO}_{3}\right)_{2}\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)_{2}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$	$Z=1$
$M_{r}=861.97$	$D_{x}=1.734 \mathrm{Mg} \mathrm{m}^{-3}$
Triclinic, $P \overline{1}$	Mo $K \alpha$ radiation
$a=8.8121(8) \AA$	Cell parameters from 2123
$b=10.0253(9) \AA$	reflections
$c=10.1720(9) \AA$	$\theta=2.4-25.4^{\circ}$
$\alpha=69.474(1)^{\circ}$	$\mu=3.14 \mathrm{~mm}^{-1}$
$\beta=80.252(1)^{\circ}$	$T=295(2) \mathrm{K}$
$\gamma=81.477(1)^{\circ}$	Prism, brown
$V=825.6(1) \AA^{\circ}$	$0.36 \times 0.18 \times 0.18 \mathrm{~mm}$

Received 22 June 2005 Accepted 23 June 2005 Online 30 June 2005

Data collection

Bruker SMART area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan (SADABS; Bruker, 1999)
$T_{\text {min }}=0.347, T_{\text {max }}=0.568$
6931 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.048$
$w R\left(F^{2}\right)=0.144$
$S=1.01$
3565 reflections
238 parameters
H atoms treated by a mixture of independent and constrained refinement

3565 independent reflections 2240 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.029$
$\theta_{\text {max }}=27.2^{\circ}$
$h=-10 \rightarrow 11$
$k=-12 \rightarrow 12$
$l=-12 \rightarrow 13$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0832 P)^{2}\right. \\
& \quad+0.0828 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.00 \\
& \Delta \rho_{\max }=0.85 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.47 \mathrm{e} \mathrm{~A}^{-3}
\end{aligned}
$$

Table 1
Selected geometric parameters $\left(\AA^{\circ},{ }^{\circ}\right)$.

$\mathrm{Cu} 1-\mathrm{O} 1$	$1.932(3)$	$\mathrm{Cu} 1-\mathrm{O} 2$	$2.229(3)$
$\mathrm{Cu} 1-\mathrm{N} 1$	$2.077(4)$		
$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{O} 1^{\mathrm{i}}$	180	$\mathrm{O} 2-\mathrm{Cu} 1-\mathrm{O} 2^{\mathrm{i}}$	180
$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{O} 2$	$86.3(1)$	$\mathrm{O} 2-\mathrm{Cu} 1-\mathrm{N} 1$	$91.4(1)$
$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{O} 2^{\mathrm{i}}$	$93.7(1)$	$\mathrm{O} 2-\mathrm{Cu} 1-\mathrm{N} 1^{\mathrm{i}}$	$88.6(1)$
$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{N} 1$	$90.8(1)$	$\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{N} 1^{\mathrm{i}}$	180
$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{N} 1^{\mathrm{i}}$	$89.2(1)$		

Symmetry code: (i) $-x+1,-y+1,-z+1$.

Table 2
Hydrogen-bond geometry $\left(\AA^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1 w-\mathrm{H} 1 w 1 \cdots \mathrm{O} 1$	$0.86(1)$	$2.23(4)$	$2.948(5)$	$142(6)$
$\mathrm{O} 1 w-\mathrm{H} 1 w 2 \cdots 3^{\mathrm{ii}}$	$0.86(1)$	$2.25(4)$	$3.018(6)$	$149(6)$

Symmetry code: (ii) $-x+1,-y+1,-z$.
The C-bound H atoms were positioned geometrically $(\mathrm{C}-\mathrm{H}=$ $0.93 \AA$) and were included in the refinement in the riding-model approximation, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$. The water H atoms were located in a difference Fourier map, and were refined with distance restraints of $\mathrm{O}-\mathrm{H}=0.85$ (1) \AA and $\mathrm{H} \cdots \mathrm{H}=1.39$ (1) \AA.

Figure 1
ORTEPII plot (Johnson, 1976) of (I). Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as spheres of arbitrary radii. The Cu atom lies at the center of inversion ($\frac{1}{2}, \frac{1}{2}, \frac{1}{2}$) [symmetry code: (i) $1-x, 1-y, 1-z]$.

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

The authors thank the Ministry of Science, Technology and the Environment for supporting this study (grant No. IPRA 33-02-03-3055). We thank Mr Xiao-Long Feng of Sun Yat-Sen University for the diffraction measurements.

References

Ali, H. M., Abdul Halim, S. N., Koushik, S., Lajis, N. Hj., Basirun, W. J. \& Ng, S. W. (2005). Acta Cryst. E61, m691-m692.

Bruker (1999). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

